Discontinuous Galerkin Methods for Ordinary Differential Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local discontinuous Galerkin methods for fractional ordinary differential equations

This paper discusses the upwinded local discontinuous Galerkin methods for the one-term/multi-term fractional ordinary differential equations (FODEs). The natural upwind choice of the numerical fluxes for the initial value problem for FODEs ensures stability of the methods. The solution can be computed element by element with optimal order of convergence k+ 1 in the L2 norm and superconvergence...

متن کامل

Discontinuous Galerkin Methods for Partial Differential Equations

Day 1: Monday, September 26, 2011 Hybridized DG Method and Mimetic Finite Differences Franco Brezzi IUSS and IMATI-CNR, Pavia Via Ferrata 1, 27100 Pavia [email protected] Abstract: The talk will discuss the relationships between certain variants of Mimetic Finite Differences and the Hybridized version of DG methods for some very simple model problem. The talk will discuss the relationships be...

متن کامل

Discontinuous Galerkin Methods for Fractional Diffusion Equations

We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems, characterized by having fractional derivatives, parameterized by β ∈ [1, 2]. We show through analysis that one can construct a numerical flux which results in a scheme that exhibit optimal order of convergence O(hk+1) in the continuous range between pure advection (β = 1) and pure...

متن کامل

Discontinuous Galerkin Methods for Vlasov-maxwell Equations

In this paper, we propose to use discontinuous Galerkin methods to solve the Vlasov-Maxwell system. Those methods are chosen because they can be designed systematically as accurate as one wants, meanwhile with provable conservation of mass and possibly also of the total energy. Such property in general is hard to achieve within other numerical method frameworks to simulate the Vlasov-Maxwell sy...

متن کامل

Block Jacobi for discontinuous Galerkin discretizations: no ordinary Schwarz methods

For classical discretizations of elliptic partial differential equations, like conforming finite elements or finite differences, block Jacobi methods are equivalent to classical Schwarz methods with minimal overlap, see for example [4]. This is different when the linear system (1) is obtained using DG methods. Our paper is organized as follows: in section 2 we describe several DG methods for li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1981

ISSN: 0025-5718

DOI: 10.2307/2007652